Prevalence of circulating *T.*pallidum DNA and RNA in PKTMTP+/ FTA•ABS + blood donors

- American Red Cross ARCNET Program
 - · SL Orton, PhD
 - · RG Cable, MD
 - · AJ Grindon, MD
 - · AE Williams, PhD
- Centers for Disease Control and Prevention
 - H Liu, PhD

Scientific Question

• Do blood donors with confirmed positive syphilis tests have evidence of circulating *Treponema pallidum*? If so, what is the prevalence?

Theoretically, all confirmed positive syphilis tests should represent current or past disease.

Hypothesis

• Confirmed positive syphilis tests do not represent current infection.

How did we arrive at this hypothesis?

Background

- Anecdotal evidence from blood donors who have been notified of confirmed positive syphilis tests.
- Evidence in the literature that in low risk populations, most (if not all) positive results represent antibody from previous disease or biological false positive reactivity.

_

continued

 Conditions associated with biological false positive test results can affect all of the tests currently in use for screening of donated blood (PKTMTP, FTA-ABS and RPR).

5

Assumption

- An individual with spirochetemia is not likely to present as a blood donor.
 - ✓ Syphilis is a rare disease in the US (in 1998, CDC reported an incidence of 2.6/100,000 population (0.5/100,000 in Whites)
 - ✓ Peak spirochetemia occurs during the secondary phase, which presents as acute, symptomatic disease.

Assumption (continued)

- ✓ There has not been a documented case of transfusion transmitted syphilis in over 30 years, despite the fact that:
 - 1. spirochetemia may occur during the primary phase
 - this phase may be asymptomatic and seronegative early (last reported case was from a seronegative donor) and
 - 2. transfusion transmitted syphilis would result in secondary phase syphilis that should be recognizable

Goal

 Determine if there is any evidence of circulating T. pallidum in the blood of donors who are PKTMTP reactive, FTA-ABS positive by specific detection of DNA or RNA (as surrogate measures of potential infectivity).

Sample

- Target sample size: 100 PK[™]TP reactive, FTA-ABS positive donations; 50 RPR reactive, 50 RPR non-reactive
- Use existing platelet concentrates from these donations

Platelet Concentrates

- T. pallidum spirochetes are likely to segregate with white blood cells (WBC's)
- Preparation of platelet concentrates yields both concentrated platelets, and concentrated white blood cells
 - ✓ whole blood=10° WBC's/500 ml=2 x 106/ml
 - ✓ packed red blood cells=108 WBC's/250 ml=4 x 105/ml
 - ✓ platelet concentrates=10⁷ WBC's/50 ml=2 x 10⁵/ml

..

Testing

- PCR for T. pallidum specific DNA using the pol A gene target
 - ✓ capillary electrophoresis and fluorescent detection
 - ✓ read on an ABI 310 Genetic Analyzer
 - ✓ sensitive to 10-25 organisms/100 ul platelet concentrate extracted

11

Testing (continued)

- Multiplex PCR kit (Roche) for T. pallidum,
 H. ducreyi and HSV 1&2 DNA
 - ✓ 47kD basic membrane protein gene target for T. pallidum previously described.
 - ✓ Sensitive to 10 organisms/100 ul platelet concentrate extracted

Testing (continued)

- RT-PCR using 16S rRNA template for reverse transcription production of cDNA
 - ✓ detection by Southern blot or Agilent Bioanalyzer
 - ✓ sensitive to 1 organism/140 ul platelet concentrate extracted

13

Testing (continued)

- Controls
 - ✓DNA: both assays included internal and external control samples. Positive external controls were diluted to 50 organisms per 100 μL from stock *T. pallidum* (Nichols strain) cultures.
 - ✓ RNA: positive controls diluted to 10⁻¹ genome equivalents per 140 μL from stock *T. pallidum* (Nichols strain) cultures.
 - ✓ Negative controls: all assays

14

Results

- 100 samples tested negative for *T. pallidum* DNA by both assays.
- 100 samples tested negative for *T. pallidum* RNA

Study limitations

- The optimal sample for detection is fresh whole blood.
- Because we can never "prove" a negative test result, in a pilot study with a sample size of 100 and all negative test results, there is up to a 3% chance that there is an incorrect interpretation of no evidence of infectivity.

16

Discussion

- There are differences in findings between this study and the CDC work presented today.
- There are differences in the populations studied (blood donors vs individuals identified during a syphilis outbreak).
- Results of a case control study: ~50% of blood donors with a confirmed positive test result report a previous history of syphilis (> 1 yr prior to donation)

17

Conclusions

- We did not demonstrate circulating T.
 pallidum DNA or RNA in the platelet
 concentrates of PK™TP reactive, FTA ABS positive blood donors in this pilot
 study.
- It is unlikely that the blood of donors with confirmed positive syphilis test results is infectious for syphilis.

6

r. Mark Popo an Badon, Ki	wsky, Jonathan Trouern- m Munsterman. Nicole	,				
ice Lenes, An		<i>,</i> ,				
	Monica Reichenbach	İ				
	Dr. Cheng-Yen Chen					
hington:	Dr. Sheila Lukehart	1				
	or. Mark Popo lan Badon, Ki Ingrid Vaque Blood Centers ace Lenes, An eda	Blood Centers of South Florida ARCNET ace Lenes, Angela Buenano, Colleen Reilly eda Monica Reichenbach Dr. Cheng-Yen Chen	or. Mark Popovsky, Jonathan Trouern- lan Badon, Kim Munsterman. Nicole Ingrid Vaquerano, Melinda Tibbals, Keiko Blood Centers of South Florida ARCNET lice Lenes, Angela Buenano, Colleen Reilly, eda Monica Reichenbach Dr. Cheng-Yen Chen	Pr. Mark Popovsky, Jonathan Trouern- lan Badon, Kim Munsterman. Nicole Ingrid Vaquerano, Melinda Tibbals, Keiko Blood Centers of South Florida ARCNET lice Lenes, Angela Buenano, Colleen Reilly, eda Monica Reichenbach Dr. Cheng-Yen Chen	Pr. Mark Popovsky, Jonathan Trouern- lan Badon, Kim Munsterman. Nicole Ingrid Vaquerano, Melinda Tibbals, Keiko Blood Centers of South Florida ARCNET lice Lenes, Angela Buenano, Colleen Reilly, eda Monica Reichenbach Dr. Cheng-Yen Chen	Monica Reichenbach Dr. Cheng-Yen Chen

Relationship of anti-HBc and Serologic Tests for Syphilis (STS) to Blood Donor Behavioral Risk Factors

AE Williams, K Watanabe, DI Ameti, S Kleinman, MP Busch, S Orton, GJ Nemo

Retrovirus Epidemiology Donor Study (REDS)

Background - anti-HBc

- ◆ Poor specificity and high donor loss (0.7 1.8%) when used for screening of donated blood
- ◆ Value for detection of HBV infection is limited
- Surrogate value for behavioral risk detection is speculated, but unknown

Background - STS

- Screening tests for syphilis (STS) have been performed on blood donations since 1938
- No well-documented cases of transfusiontransmitted syphilis in the US in over 30 years
- •Surrogate value for behavioral risk detection is speculated, but unknown

		NT	
	,		
İ			
			
			

Background - STS (cont.) •1995 NIH Consensus Conference debated the value of continued blood donor STS screening • August 1999: FDA seeks data regarding the value of donor STS (Proposed Rules: Requirements for testing....) • as a marker of high risk behavior • as a surrogate test for other infectious diseases • in preventing the transmission of syphilis through blood transfusion Objective ♦ Assess the value of anti-HBc and STS as surrogate indicators of blood donor risk behaviors **REDS 1998 Donor Survey** • ARC, Greater Chesapeake and Potomac Region ♦ ARC, Southeastern Michigan Region ♦ ARC, Southern California Region ♦ Blood Centers of the Pacific - Irwin/UCSF ♦ Oklahoma Blood Institute ♦ New York Blood Center ◆ Blood Bank of San Bernardino ♦ Lifeblood (Memphis) ♦ Medical Coordinating Center - Westat, Inc.

REDS 1998 Donor Survey (cont.) ♦ Anonymous mail survey ♦ Allogeneic donors; ≥18 years. • Monthly probability sample of donors April through October 1998. ◆ 92,581 sampled donors at eight sites ◆ 57% survey response rate REDS 1998 Donor Survey (cont.) • Survey sample included four laboratory test strata: - anti-HBc+ - STS+ - other lab reactivity - seronegative • all anti-HBc+ and STS+ donors surveyed REDS 1998 Donor Survey - Content - Demographics - Donation history/experiences - Deferrable Risk Assessment (DR) - Multiple Investigations » Surrogate value of STS and anti-HBc » Incentives » Hemochromatosis » HIV test-seeking

DEFERRABLE RISK

 A risk that should have resulted in deferral according to blood donor screening criteria at the time of the survey

Results: Deferrable Risk (DR)

	DR Prev	<u>OR</u>	Adj.OR*
♦ Neg	2.9%	1.0	1.0
◆ anti-HBc	8.0%	2.9 †	2.7 _†
◆ STS+	13.7%	5.4 t	5.5 _†
◆ Other+	11.5%	4.4 †	3.3

^{*} Odds ratios adjusted for gender, age, race/ethnicity, education, center, FT donors (all p< .001)

† p < 0.001

Proportion of Overall DR Associated with anti-HBc and STS (%)

_	DR Prev	% of Overall DR
◆ Neg	2.9	94.4
♦ anti-HBc	8.0	2.4
◆ STS+	13.7	1.0
♠ Other+	115	22

		
		4
	· · · · · · · · · · · · · · · · · · ·	
	-	
· · · · · · · · · · · · · · · · · · ·		

Proportion of Overall MSM and IDU risks
associated with anti-HBc and STS (%)

	MSM	s/MSM	IDU	s/IDU
♦ Neg	94.1	96.5	87.0	93.7
♦ anti-HBc	3.0	2.1	2.5	1.9
◆ STS+	0.3	0.5	0.2	0.5
◆ Other+	2.6	1.0	10.3	3.9

Proportion of Overall STS-related risks
associated with anti-HBc and STS (%)

_	STS+/12 mos.	Rx for S/G
♦ Neg	62.4	89.4
◆ anti-HBc	5.7	3.8
◆ STS+	31.9	5.6
♦ Other+	0.0	1.3

Results: Deferrable Risk (DR) excluding STS

	DR Prev	<u>OR</u>	Adj.OR*
♦ Neg	2.7%	1.0	1.0
• anti-HBc	7.3%	2.9 †	2.7†
◆ STS+	4.7%	1.7 †	5.5†
♦ Other+	11.5%	4.6 +	3.3

^{*} Odds ratios adjusted for gender, age, race/ethnicity, education, center, FT donors (all p< .001)

[†] p < 0.001

Summary anti-HBc+ • When controlled for FT donor status and demographic factors, anti-HBc+ donors have a 2.6-fold higher level of reported deferrable risk than seronegative donors. When anti-HBc prevalence is considered, anti-HBc+ is associated with 2.4% of overall DR) • Qualitatively, anti-HBc-associated risks are similar to those of the overall donor base. Summary STS+ • When controlled for FT donor status and demographic factors, STS+ donors have a 5.2-fold higher level of reported deferrable risk than seronegative donors. When STS+ prevalence is considered, STS is associated with 1.0% of overall DR) • However, DR associated with STS+ is mostly due to STS-related risk factors. Conclusions • Results of this study indicate that the value of STS as a surrogate behavioral risk measure is inconsequential.

◆ If parallel molecular studies continue to show an absence of *T pallidum* in STS+ blood, the requirement for STS testing of donated blood should be removed.

Study Limitations	
Survey risk estimates are reproducible, but are	
based upon self-report. Accuracy has not been validated by other independent measures.	
valuated by other macpendent measures.	
•	

•